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We investigate fractional quantum Hall states for model interactions restricted to a repulsive hard core. When
the hard core excludes relative angular momentum m = 1 between spinless electrons the ground state at Landau
level filling factor ν = 1

3 is known to be exactly given by the Laughlin wave function. When we exclude relative
angular momentum 3 only, Wójs, Quinn, and Yi have suggested the appearance of a liquid state with non-
Laughlin correlations. We study this special hard-core interaction at filling factor 1

3 on the sphere, torus, and
cylinder geometry. An analysis of the charged and neutral gaps on the sphere geometry points to a gapless state.
On the torus geometry the projected static structure factor has a two-peak feature pointing to one-dimensional
density ordering. To clarify the nature of the ground state we perform extended density matrix renormalization
group studies on the cylinder geometry for up to 30 particles. The pair correlation function allows us to conclude
that the ground state is a two-particle bubble phase.
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I. INTRODUCTION

The quantum Hall effect is a striking phenomenon in
condensed matter physics. It appears as a low-temperature
anomaly in the transport properties of some two-dimensional
electronic systems. For special values of an applied perpen-
dicular magnetic field the longitudinal resistance goes to zero
with an activated law as a function of the temperature and
at the same time there is a plateau in the Hall resistance.
The one-electron spectrum in these special circumstances
consists of Landau levels with macroscopic degeneracy sep-
arated by the cyclotron energy. Coulomb interactions between
electrons inside lowest-lying Landau levels give rise to a
family of incompressible liquid states that are responsible
for the fractional quantum Hall effect (FQHE). Theoretical
understanding of the most prominent state at filling factor
ν = 1

3 of the lowest Landau level (LLL) is based on an ex-
plicit many-particle wave function due to Laughlin [1]. The
composite-fermion (CF) theory of Jain [2] is also based on
explicit wave functions and captures successfully many phys-
ical properties of other FQHE states. These wave functions
are however not exact eigenstates of the Coulomb interac-
tion Hamiltonian projected onto the LLL. In the case of the
Laughlin state it is known that it is the exact ground state of
a hard-core interaction that gives a nonzero energy only to
states with relative angular momentum m = 1 between spin-
less electrons [3]. The physical relevance of the Laughlin state
stems from the fact that one can adiabatically follow a path
in Hamiltonian space between this special hard-core model
and the complete Coulomb interaction, without closing the
gap. No such model is known for the Jain CF wave functions.
The CF theory explains the appearance of the experimentally
prominent series of FQHE states observed for filling factors

ν = p/(2p ± 1) with p a positive integer. However this does
not exhaust the observed incompressible states. For example
in the LLL for filling factors between ν = 1

3 and ν = 2
5 two-

dimensional electron gases with high mobility also exhibit
additional fractions at ν = 5

13 , 4
11 . There is also a fraction

with even denominator in the second Landau level at ν = 5
2

which may very well be the so-called Pfaffian state [4,5]. The
Laughlin/CF states are built with some Jastrow-like correla-
tion factors giving them the correct low-energy properties.
The range of validity of these correlations is not yet known.
Wójs and Quinn [6,7] have argued that the repulsive poten-
tial between electrons should have a special “superharmonic”
dependence on the relative angular momentum.

If we consider that FQHE states between ν = 1
3 and ν =

2
5 are due to condensation of quasiparticles or quasiholes
emanating from the parent state at ν = 1

3 then it is not
clear what is the effective interaction between the quasipar-
ticles/quasiholes. Notably it may be that they are not of the
Laughlin/CF type. Wójs, Yi, and Quinn (WYQ) in a series of
works [8–11] have suggested that there is an incompressible
state at filling factor ν = 1

3 with non-Laughlin correlations.
They consider a special hard-core Hamiltonian which gives
nonzero energy only for two-body states with relative angular
momentum (RAM) m = 3. This may be called a “hollow-
core” model since the most repulsive part of the interaction
induced by the RAM m = 1 interaction is artificially set to
zero. By use of extensive exact diagonalizations on the sphere
geometry they have given evidence for a series of states that
are fluid-like, e.g., with a ground state with zero total angular
momentum, and that have several hallmarks of the previously
known FQHE states. This series appears for a specific rela-
tionship between the number of electrons Ne and the number

2469-9950/2020/102(24)/245107(14) 245107-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7012-3204
https://orcid.org/0000-0003-2510-0473
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.245107&domain=pdf&date_stamp=2020-12-04
https://doi.org/10.1103/PhysRevB.102.245107


MISGUICH, JOLICOEUR, AND MIZUSAKI PHYSICAL REVIEW B 102, 245107 (2020)

of flux quanta through the sphere Nφ : Nφ = 3Ne − 7. This is
to be contrasted with the series corresponding to the Laughlin
state which happens for Nφ = 3Ne − 3. The offset 7 vs 3
in the flux number of particles is called the shift quantum
number and is related to the topological properties of the
state. This state, which does not belong to the CF family, has
been proposed [12–20] as a candidate to describe some of the
weaker FQHE states at ν = 4

11 , 5
13 . No explicit candidate wave

function is known up to now for the WYQ state. Detailed
studies are required to understand whether it is really a new
type of FQHE or whether it is a state breaking translation
symmetry like a stripe or a bubble phase [21–24] which is
not easily discovered on the sphere geometry. It may also be
related to quantum Hall nematic states [25,26] as proposed in
a recent study [27].

In this paper we study the WYQ hollow-core model by
exact diagonalizations using sphere [3,28] and torus geome-
try [29]. Since the number of particles we can treat is limited
to small values we also use the density matrix renormalization
group (DMRG) algorithm on the cylinder geometry to clarify
the nature of the ground state. For filling factor ν = 1

3 we show
that the values of gaps extracted from charged and neutral
excitations extrapolate smoothly to zero in the thermody-
namic limit from sphere calculations if we stick to the special
WYQ shift Nφ = 3Ne − 7. This indication of compressibility
alone does not however allow us to understand the nature
of the ground state. We thus use next the torus geometry where
there is no shift and so there is direct competition with the
Laughlin-like physics as well as competition with states that
break translation invariance like stripe or bubble phases. We
find that the LLL-projected static structure factor of the WYQ
state has several peaks indicating the tendency to spontaneous
breakdown of translation symmetry as is observed in the bub-
ble phase in higher Landau levels. If one uses a rectangular
unit cell one observes the appearance of a special wave vector
where fluctuations are enhanced, indicative of a tendency to
spatial ordering. To clarify the nature of this ordering we next
ran DMRG studies in the cylinder geometry on large systems
of up to 30 electrons to be reasonably sure to avoid finite-size
effects. We measure the pair correlation function and conclude
that the ground state is a two-electron bubble phase as ex-
pected from Hartree-Fock theory for Coulomb interactions in
higher Landau levels.

It has been proposed that interactions between CFs in the
effective second Landau level of the CF theory are modeled
after the hollow-core pure V3 model. Following this idea it
means that an incompressible ground state of the hollow-core
model would explain incompressibility at electronic filling
factor ν = 4

11 after the standard Jastrow factor attachment
in composite-fermion theory since this filling corresponds to
filling ν∗ = 1 + 1

3 of the CFs. However it is known that the
hollow-core model is not always a good model of composite-
fermion interactions in the second Lambda level as stated in
Ref. [12]. Nevertheless CF diagonalization studies [12] with
the pure Coulomb interactions have given evidence for an
incompressible state of electrons at filling factor ν = 4

11 that
happens with an unconventional shift (the same as proposed
by WYQ) for the CFs. Our results mean that to generate a
valid incompressible state in this universality class, if it exists,
one has to go beyond the simple pure hollow-core model.

It remains to be seen whether it is possible to deform the
hollow-core model and reach the WYQ universality class.

For filling factor ν = 1
5 there is evidence [30] for a series

of states with Nφ = 5Ne − 9 starting at Ne = 5 up to Ne = 12
which are isotropic and have zero angular momentum. The
shift is again different from that of the Laughlin state at ν = 1

5 .
This special state when expressed in the standard Fock space
basis has only integer coefficients for all the accessible sizes
we could reach. This does not happen for the WYQ state
which has always nonzero energy. The property of integer
coefficients is reminiscent of the Jack polynomials [31–34]
that describe several special states many of them being critical
with zero gap in the thermodynamic limit. In the torus ge-
ometry the hollow-core Hamiltonian has a set of zero-energy
ground states that grows with the system size.

In Sec. II we give the basic formalism for hard-core models
of the FQHE. Section III is devoted to the study of the thermo-
dynamic limit of the fraction ν = 1

3 for the hollow-core model
on the sphere and on the torus geometry. Section IV gives our
findings from DMRG studies in the cylinder geometry and we
present results giving evidence for a 2-electron bubble phase.
Finally, Sec. V presents our conclusions. The appendices con-
tain some findings related to the special state at ν = 1

5 .

II. HARD-CORE MODELS FOR FRACTIONAL
QUANTUM HALL STATES

In this work we consider only spin-polarized electronic
systems. In the symmetric gauge defined by the vector po-
tential A = (B × r)/2 the LLL basis states can be written as

φk (z) = 1√
2k+1π

zk e−|z|2/4�2
, (1)

where k is a positive integer which is the disk angular mo-
mentum of the state, � = √

h̄/eB is the magnetic length, and
z = x + iy is the complex coordinate of the particle. A generic
many-body state for Ne electrons is thus of the form

�(z1, . . . , zNe ) = P(z1, . . . , zNe ) e− ∑
i |zi|2/4�2

, (2)

where P is an antisymmetric polynomial. Since the exponen-
tial factor is universal, i.e., does not depend on the precise
state, we will omit it in what follows. The Laughlin wave func-
tion is defined as a power of the Vandermonde determinant:

�
(p)
L = �m

V =
∏
i< j

(zi − z j )
p. (3)

It describes successfully the FQHE state at ν = 1
3 (resp. ν =

1
5 ) for p = 3 (resp. p = 5).

A generic two-body interaction Hamiltonian projected
onto the LLL can be written as a sum of projectors onto states
of definite relative angular momentum m:

H =
∑
i< j

∑
m

VmP̂ (m)
i j , (4)

where m is a non-negative integer and the coefficients Vm are
the so-called Haldane pseudopotentials [3]. The antisymmetry
of their wave function makes spinless fermions sensitive only
to odd values of m. The set of pseudopotentials {Vm} thus
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completely characterizes the projected two-body interactions.
For the physically relevant case of the Coulomb interaction the
Vm are monotonic and decreasing with large m as ∼m−1/2. If
we consider the hard-core Hamiltonian H1 with V1 = 1 and all
other pseudopotentials set to zero Vm = 0, m > 1, then H1 has
many zero-energy eigenstates but the densest such state cor-
responding to a polynomial of smallest total degree is unique
and is given precisely by the Laughlin wave function for p =
3: �

(3)
L . Similarly we can construct a Hamiltonian with �

(5)
L as

its exact densest zero-energy state by taking H1 + H3 where
H3 has only V3 nonzero positive pseudopotential. In fact any
linear combination with positive coefficients of H1 and H3 has
this property. The pseudopotentials offer a convenient way to
parametrize deformations of two-body Hamiltonians. For ex-
ample the belief that the Laughlin state captures correctly the
physics of the Coulomb-interacting electrons at filling factor
ν = 1

3 is based on numerical studies that tune pseudopoten-
tials from the pure hard-core V1 model to the Coulomb values.
The model we focus on in the paper has only V3 nonzero and
will be called the hollow-core model in what follows.

III. THE WÓJS-YI-QUINN SERIES Nφ = 3Ne − 7

A. Sphere study

In this geometry, electrons are constrained to move at the
surface of a sphere of radius R = �

√
S with S = Nφ/2 and the

LLL basis states are given by

�
(S)
M =

√
2S + 1

4π

(
2S

S + M

)
uS+M vS−M , M = −S, . . . ,+S,

(5)
where M is a half integer and we have introduced the elemen-
tary spinors

u = cos(θ/2) eiγ /2, v = sin(θ/2) e−iγ /2, (6)

where θ, γ are spherical coordinates. The basis states form a
multiplet of angular momentum Lorb = S. In this geometry the
Laughlin wave function can be written as

�
(p)
L =

∏
i< j

(uivi − u jvi )
p. (7)

The wave function Eq. (7) is a singlet of zero total orbital
angular momentum since it involves only combinations of
factors uiv j-u jvi which are themselves singlets. We use the
spherical geometry in some of our exact diagonalization stud-
ies. Hence the eigenstates can be classified by their total
angular momentum. On the sphere geometry incompressible
FQHE states have distinct characteristic features. Notably the
ground state is a singlet of total orbital angular momentum
and there is a gap above this ground state which is large with
respect to the finite-size spacing typical of higher-lying levels.
This is at least the case for the standard Laughlin state at ν =
1
3 in the LLL and many other FQHE states. In the case of the
ν = 1

3 state if we add one flux quantum then the ground state
becomes an isolated multiplet with Lorb = Ne/2 which is the
quasihole. Similarly the quasielectron state involves removal
of one flux quantum with respect to the fiducial state following
Nφ = 3(Ne − 1). Wójs, Yi, and Quinn [8] have shown by exact
diagonalizations up to 12 electrons for the H3 model, i.e., with

FIG. 1. The gaps for the WYQ sequence of states with Nφ =
3Ne − 7 vs inverse number of particles. Lower graph gives the neutral
excitation gaps defined without change of the flux and the excited
state may have any orbital angular momentum. Upper graph gives
the quasiparticle-quasihole gap defined through addition/removal of
one flux quantum. Sizes range from Ne = 8 to 16 in the neutral case
and up to Ne = 15 in the charged case.

only nonzero pseudopotential V3, that there is also a series
of states with essentially the same spectral signatures as the
ν = 1

3 FQHE state but with a distinct relation between flux
and number of electrons given by Nφ = 3Ne − 7. Even if there
is no clear collective mode resembling the magnetoroton, the
ground state is well separated from a higher-lying continuum
for all accessible sizes. Taken at face value these results imply
the existence of a FQHE state at ν = 1

3 which is topologically
distinct from the Laughlin fluid. However one has to check
the convergence to the thermodynamic limit. Here we have
studied the gap of this system as a function of the number of
electrons. The first gap one can define is the lowest excitation
energy at Nφ = 3Ne − 7 irrespective of its quantum number.
In the standard Laughlin case it is the gap to the minimum of
the magnetoroton branch. This neutral gap is displayed in the
lower part Fig. 1. One can also define a gap by


N = E0(Nφ + 1) + E0(Nφ − 1) − 2E0(Nφ ), (8)

where E0(Nφ ) is the ground state of the system with Ne

electrons at flux Nφ . This gap, when nonzero in the thermo-
dynamic limit, signals a cusp in the energy as a function of
density. It is given by the upper curve in Fig. 1. Assuming
creation of quasihole/quasielectron by addition/removal of
one flux quantum, this quantity is the gap for creating one
quasielectron-quasihole pair.

Concerning neutral excitations no amount of fitting can
possibly lead to a nonzero value of the gap in the thermo-
dynamic limit since all data points beyond Ne = 11 display
a downward curvature. Concerning the charged gap Eq. (8)
the best linear fit to data beyond Ne = 11 leads also to a large
negative value of the gap ≈−0.144V3. The best one can do to
obtain a positive value is to exclude all data points except the
two largest systems and make a linear fit leading to an estimate
of ≈+0.032V3 an effect due to the small upward curvature that
appears for the largest systems. Since this gap is much smaller
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than the overall best fit, the best guess is that the charged gap
is zero and the state is compressible. Since gap scaling alone
may not be a clear signature of the incompressible behavior
we turn to the use of DMRG in Sec. IV to access much
larger systems. Note that we have not used any rescaling of
the magnetic length because this is valid only in the case of
Coulomb potential. Indeed when the gap is known to scale as
the inverse of the magnetic length it is sensible to correct for
the fact that the nonzero shift in the flux number of particles
relation changes the density with respect to thermodynamic
limit. However in the case of hard-core models the gap is
not proportional to a simple power of � because there is no
power-law expression of the potential in real space.

We note that a scenario in which the charge gap is nonzero
but the neutral gap is vanishing corresponds to a quantum Hall
nematic phase (see, e.g., Ref. [35] and references therein).
This special state of matter breaks rotation symmetry but
respects translation invariance. General microscopic condi-
tions [35] suggest that one may have to add some extra
hard-core components to the Hamiltonian like a V5 pseudopo-
tential to stabilize it. We will use the pair correlation function
in Sec. IV to constrain such a possibility.

We have also tried to construct an explicit wave function
with the WYQ shift. To do so, one has to remove Jastrow-type
factors out of the Laughlin wave function changing the shift
but without changing the total filling factor. A way to do this
can be found in the CF construction of wave functions. In this
theory a composite fermion is a bound state of an electron
and two quantized vortices. The vortex attachment reduces the
flux felt by the electron and we have N∗

φ = Nφ − 2(Ne − 1) on
the sphere. The particles now occupy effective Landau levels
called �LLs and not simply the LLL because they feel this
reduced effective magnetic flux. Filling an integer number p of
these �LLs leads to the FQHE states at electron filling factor
ν = p/(2p + 1). Implicit in this reasoning is the minimization
of some kind of mean-field energy given by the effective
cyclotron energy governing the spacing between the �LLs. If
we relax this mean-field type of reasoning and just consider
the algebraic machinery alone it is possible to fill only an
excited � level with CFs and to leave empty the lower-lying
�LLs. Certainly this is not energetically favorable when using
the Coulomb interaction. However it is not immediately clear
what happens with the hollow-core H3 interaction. This pro-
cedure of filling only one higher-lying �LL indeed changes
the shift but not the filling factor. If we fill only the second
�LL one has a state with shift 5 and filling only the third
�LL gives the WYQ shift of 7. Such states are by construction
orbital singlets. So we consider a trial wave function

�t = PLLL�2J2, (9)

where the Jastrow correlation factor J is the Vandermonde
determinant on the sphere:

J =
∏
i< j

(uivi − u jvi ). (10)

In this equation �2 is a Slater determinant for the n = 2 �LL
only and PLLL is the projection operator onto the LLL. To
perform this projection in an efficient way we have used the
technique introduced by Jain and Kamilla [36,37]. By con-

FIG. 2. The pair correlation function obtained from the WYQ
state by exact diagonalization of the hollow-core model with Ne = 10
fermions is displayed in blue. A composite-fermion trial wave func-
tion with the correct shift and filling factor gives a very different
type of correlation: this is the green curve. Both calculations are
performed on the sphere geometry.

struction this state is an orbital singlet with the WYQ relation
between flux and number of particles. We have computed the
pair correlation function of this state,

g(�r) = 1

ρNe

〈∑
i �= j

δ(2)(�r − �ri + �r j )

〉
, (11)

where ρ is the density. It may be evaluated by Monte Carlo
sampling. The result is given by the green curve in Fig. 2.
The same pair correlation function for the WYQ state obtained
from direct exact diagonalization is given by the blue curve in
the same figure. While they both have a complex structure
they are very different. So we conclude that it is unlikely that
the CF wave function Eq. (9) can be used to describe the WYQ
state at ν = 1

3 . Of course this may not exhaust all possibilities
of the CF construction.

B. Torus study

The geometry used in exact diagonalization (ED) calcu-
lations introduces a bias on the states that can be studied.
Notably states with broken space symmetries are frustrated
on the sphere and are revealed more clearly on the torus.
This is known to be the case for the stripe states that appear
for half filling in the N = 2 Landau level and also for the
bubble phase for quarter filling of N = 2 also [38–40]. They
are identified by a set of quasidegenerate ground states that
form a one-dimensional lattice in momentum space for stripe
phases or a 2D lattice for bubble phases.

We have performed exact diagonalizations on the torus
geometry using the algebra of magnetic translations which
allows us to factor out the overall translation invariance.
Eigenstates can be classified by two conserved quantum
numbers s, t = 0, . . . , N0, where N0 is the greatest common
divisor (GCD) of Ne and Nφ . They correspond to the two-
dimensional momenta [3,29]. We have performed ED studies
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FIG. 3. The projected structure factor S0[q] drawn above the
basal plane (qx, qy ) for Ne = 12 electrons. The unit cell is hexagonal
and the ground state is the WYQ state at filling factor 1

3 . The cor-
relations have a double-ring structure with a modulation of sixfold
symmetry due to the choice of the unit cell.

on the torus up to Ne = 12 electrons for the H3 model. In the
case of a rectangular unit cell by varying the aspect ratio a0

it is possible to favor states breaking translation invariance.
For 0.3 � a0 � 1 there is no evidence for quasidegenerate
states. The ground state remains at K = 0 and as in the sphere
case there is no well-defined collective excitation mode before
reaching a higher-lying continuum of excited states. In addi-
tion to spectral signature an important diagnostic quantity is
the LLL-projected static structure factor S0(q) which can be
defined through the guiding center coordinates Ri:

S0[q] = 1

Ne

∑
i �= j

〈exp iq(Ri − R j )〉. (12)

When evaluated for the stripe or bubble phases it has
well-defined peaks in reciprocal space corresponding to the
ordering wave vectors. The sensitivity to changes in the shape
of the unit is also an indication that the state is compressible.
This is what we observe in the case of the WYQ state. The
projected structure factor computed in the highly symmetric
hexagonal cell is given in Fig. 3. It has a prominent two-ring
structure and these rings are not circular; they are sensitive to
the boundary conditions and modulated with the symmetry
of the unit cell. This is very different from the Laughlin
state which has strongly damped oscillations beyond a single
central ring surrounding the correlation hole and this ring is
insensitive to the shape of the unit cell.

If we distort the cell to a rectangle with aspect ratio 0.4 we
find that there are now two well-defined peaks hinting at some
form of one-dimensional ordering; see Fig. 4. They persist
for 0.3 � a0 � 0.5. To confirm the spatial pattern we have
evaluated the pair correlation function Eq. (11) on the torus
geometry. We find that there is a clear pattern that appears. A
sample calculation is shown in Fig. 5.

These findings are consistent with a compressible stripe
state as the ground state of the WYQ model for filling ν =
1
3 . This identification would be complete with the obser-
vation of an associated manifold of quasidegenerate states.

FIG. 4. The projected structure factor S0[q] in momentum space
in a rectangular unit cell with aspect ratio a0 = 0.4 computed for
Ne = 12 electrons. There are two sharp peaks suggestive of one-
dimensional ordering as confirmed by the real-space calculation of
the pair correlation function.

Stripe states [21–24] have been proposed as solutions of the
Hartree-Fock approximation for half-filled Landau levels with
Coulomb interactions with Landau level index at least 2. The
characteristic wave vector of the stripe then decreases with
the LL index. Since we do not observe the expected manifold
of quasidegenerate states associated with spontaneous break-
down of translation symmetry, it may be that the nature of the
ground state is more subtle. Since the number of electrons we
consider is quite limited we turn to the DMRG method for

FIG. 5. The pair correlation in real space in a rectangular unit
cell with aspect ratio a0 = 0.3 computed for Ne = 10 electrons.
The reference electron is at the center of the rectangle where it is
surrounded by a correlation hole. There are four stripes that are
elongated following the smallest dimension of the unit cell. These
stripes are separated by a length ≈5�.
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the study of larger systems. This study shows that for large
enough systems the ground state is indeed a 2-electron bubble
phase.

IV. DMRG STUDY IN THE CYLINDER GEOMETRY

A. Hilbert space

The Hilbert space is the Fock space associated with the
lowest Landau orbitals on the cylinder of perimeter L, which
are (one-body) wave functions given by

φn(x, y) =
(

1

L�
√

π

) 1
2

exp

[
− 1

2�2
(x − xn)2

]
exp (ikny),

kn = 2πn

L
, xn/� = −2πn

L/�
, (13)

where the integer n (positive or negative) labels at the same
time the angular momentum kn in the y direction, and the
coordinate xn of the center of mass of the orbital.

In the following we consider finite cylinders obtained by
considering a finite number Norb = Nφ + 1 of orbitals. The
model does not therefore have a sharp boundary in real space.
Since the spacing in the x direction between two consecutive
orbitals is δx = 2π�2/L → 2π/L, the length of the cylinder
is of order Ly � Norbδx = 2πNorb�

2/L → 2πNorb/L.
For an odd number Norb of orbitals we restrict the in-

dex n to be in the range −(Norb − 1)/2 � n � (Norb − 1)/2,
and for even Norb we take −Norb/2 + 1 � n � Norb/2. In the
following we will denote by I this set of integers. The second-
quantized form of a generic two-body Hamiltonian reads

H = 1

2

∑
n1,n2,n3,n4

An1,n2,n3,n4 c†
n1

c†
n2

cn3 cn4 , (14)

where the matrix elements are related to the real-space poten-
tial V (r) through

An1,n2,n3,n4 =
∫

dr1dr2φn1 (r1)∗φn2 (r2)∗

× V (r1 − r2)φn3 (r2)φn4 (r1). (15)

We translate the V1-V3 Hamiltonian in the cylinder geometry,

H = H(1) + H(3), (16)

with

H(1) = V1
(2π )5/2

L3

∑
b,c,d

(d2 − c2)λc2+d2
c†

b+cc†
b+d cb+c+d cb,

(17)

H(3) = V3
(2π )5/2

L3

∑
b,c,d

λc2+d2

[
3

2
(d2−c2)+

(
2π

L

)2

(c4−d4)

+ 1

6

(
2π

L

)4

(d6 − c6) + 1

2

(
2π

L

)4

(c4d2 − c2d4)

]

× c†
b+cc†

b+d cb+c+d cb, (18)

where we have defined

λ = exp(−2π2�2/L2), (19)

and b, c, d are integers. Only the terms where b, b + c, b + d ,
and b + c + d are in I are kept. This formulation of the FQHE
has already been studied by exact diagonalization [41–43].
The thermodynamic limit is reached for large number of parti-
cles but also by sending L to infinity at the same time. At fixed
number of particles the L → 0 limit, called the thin torus limit,
as well the “hoop” limit L → ∞ are pathological.

B. DMRG results

1. Orbital densities

The DMRG results are summarized in Figs. 6 and 7, where
the mean orbital occupancies 〈c†

ncn〉 are displayed.
Figure 6 shows the evolution of the orbital density profile

when the Hamiltonian changes from the pure V1 model to the
pure V3 model, for Ne = 30 fermions. At V1 = 1 and V3 = 0
we expect the ground state to be an incompressible Laughlin
state populated/excited with 4 (fractional) quasielectrons. This
is in rough agreement with the density profile displayed in
the top panel of Fig. 6 (the homogeneous density of the zero-
energy Laughlin state is also displayed for comparison).

When increasing V3 (and decreasing V1 = 1 − V3 accord-
ingly) some strong density modulations appear. The number
of density maxima (or bumps) evolves as a function of V3.
This is presumably due to the fact that the optimal separation
between the maxima, which would minimize the energy in
an infinite system, is evolving continuously with V3. But the
finite-size system has to accommodate a finite number of
maxima. For V1 = 0.6 we can identify 7 maxima (including
the two on the edges), while this number is only 5 for the
hollow-core model (V1 = 0). This shows that intermaxima
distances grow with V3. From the present data we can estimate
this distance to be around 5.8 magnetic lengths for the hollow-
core Hamiltonian H(3).

It is important to check the robustness of these density
modulations with respect to the system size. The upper panel
of Fig. 7 displays the orbital occupancies in the pure hollow-
core model, and varying number of fermions from 17 to
30 (keeping Norb = 3Ne − 6 = Nφ + 1). The density modula-
tions appear to be quite robust, showing essentially the same
amplitude for 17 and 30 fermions (but a slightly reduced
amplitude for Ne = 20). We also have a striking similarity
between the data for Ne = 30 and Ne = 24. Concerning the
dependence on the perimeter L (at fixed Ne and fixed Norb),
the lower panel of Fig. 7 shows that the amplitude of the
modulation is almost the same for L = 20, 22, and 24. The
most elongated cylinder, with L = 15, shows some reduced
modulations. All these results strongly suggest that the ob-
served modulations are not a spurious finite-size effect.

At this stage these modulations could be interpreted in two
ways: (i) as a stripe state or (ii) as a crystal state (or bubble
crystal [21,22]) state. In the first case the system would be
translation invariant in the y direction, and the stripes would
be here rolled up in the periodic direction (y) of the cylinder.
In the second scenario, the state would spontaneously break
the translation symmetry in both directions in the thermo-
dynamic limit. On a finite system this symmetry necessarily
remains unbroken, and the observed stripelike modulations
would come from the fact that the finite-size ground state
is the projection of a broken symmetry state in the Ĵ = 0
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FIG. 6. Orbital occupancies 〈c†
ncn〉 as a function of the (center

of mass) coordinate xn of the nth orbital (in units of the magnetic
length �). V1 varies from 1 to 0 from top to bottom, and V3 =
1 − V1. Except for the green curve in the top panel (Laughlin state),
all data are obtained for Ne = 30 fermions in Norb = 84 orbitals
(Norb = 3Ne − 6 = Nφ + 1). All calculations performed with L = 20
and χ = 8000. In the top panel we also plotted the orbital densities
for the ν = 1

3 zero-energy Laughlin state (Norb = 88). The latter state
shows a constant density ni � 1

3 in the bulk of the cylinder. The
pair correlations associated with this series of states are displayed
in Fig. 9.

sector, hence translation invariant in the y direction. As we
will see below, the analysis of the pair correlations allows us to
distinguish the two situations and, in the present case, clearly
points toward scenario (ii) for the V3 = 1 model.

2. Correlations and signatures of a bubble phase

As discussed in the previous subsection, the orbital oc-
cupancies show strong indications of a broken translation
symmetry in the x direction. To detect a possible translation
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FIG. 7. Orbital occupancies as a function of the position xn for
V3 = 1, V1 = 0, and Norb = 3Ne − 6, showing some robust large-
amplitude modulations with a period � 5.8�. Top: Evolution of the
density profile with the system size, varying Norb and the number of
fermions Ne, keeping Norb = 3Ne − 6 = Nφ + 1 fixed and perimeter
L = 20. The data for Ne = 24 (with a density minimum in the center
of the cylinder) have been shifted by a half period (x → x + 2.9�),
to allow for a comparison with the other system sizes (which have
density maxima in the center of the system). Bottom: Density profiles
for different values of L, with Ne = 24 and Norb = 66. The data for
L = 24 have been shifted by a half period (x → x + 2.9�), to allow
for a comparison with the other system sizes. Note that the red curve
in the upper panel (Ne = 30 and Norb = 84) is the same as the curve
in the bottom panel of Fig. 6.

symmetry breaking occurring in the y direction too, we now
analyze the pair correlations G(r1, r2), as defined in Eq. (B4).

The results are displayed in Fig. 8. First, panels (a) and (b)
show the fermion density ρ(r) in real space for two different
system sizes in the pure V3 model and Norb = 3Ne − 6. These
densities are translation invariant in the y direction, as they
should be in any eigenstate of Ĵ . The strong modulations in the
x directions are simply the real-space counterpart of the orbital
occupancy modulations described in the previous paragraph.

As for the pair correlation data, they show some clear
triangular pattern of maxima if the reference point r1 lies on
a maximum of the density. This is the case in panels (d) and
(e). The number of unit cells of the triangular lattice is 15 in
panel (d), with Ne = 30 fermions. It is equal to 12 in panel
(e), corresponding to a system with 24 fermions. These pair
correlation data should be interpreted as signatures of a bubble
phase with two electrons per unit cell. This pattern turns out to
be quite robust with the number of fermions and with L, and
is already visible on small systems with ∼10 fermions.
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FIG. 8. Density and pair correlations for the hollow-core H(3) model. (a), (b) Fermion density ρ(r) [see Eq. (A1)]. (c), (d) Pair correlation
G(O, r) [see Eq. (B4)]. (e), (f) Pair correlation G(r1, r) with a reference point shifted to the left. (a), (c), and (d): Ne = 24, Norb = 66, L = 20.
(b), (d), and (f): Ne = 30, Norb = 84, L = 20.

It is also interesting to look at the evolution of the pair
correlations as a function of the parameters V1 and V3 when the
Hamiltonian goes from the pure hollow-core model (V1 = 0
and V3 = 1) to the hard-core one (V1 = 1 and V3 = 0). This is
illustrated in Fig. 9. Locating precisely the phase transition(s)
along this path goes beyond the scope of this study, but the
present data already indicate that the bubble phase should be
present at least for 0 � V1/V3 � 0.25. The nature of the in-
termediate region where V3 � V1 would deserve some further
study, but the pair correlations displayed in panels (b) and (e)
suggest the possibility of a stripe phase, which, contrary to the
bubble phase, would be translation invariant in the y direction.

Bubble states have already been found numerically using
DMRG in higher Landau levels [44,45]. Our conclusion is
related to the results of Ref. [46], which concluded (based
on the Hartree-Fock calculations for composite fermions) that
bubble states with 2 fermion per cell are energetically favored
compared to stripes for the Coulomb interaction and ν � 0.4.
In Ref. [27], based on exact diagonalization, it was claimed
that the V1-V3-V5 model at ν = 1

3 realizes a stripe or a smectic
state for low V5 and large V3. In view of our results, it seems

highly plausible that this phase is in fact nothing but a 2-
bubble state.

Finally, let us comment on the panels (c) and (f) of Fig. 8,
where no triangular structure can be seen. They correspond to
cases where the reference point is at a density minimum [see
panels (a) and (b)], and where the density is in fact close to
zero. Forcing a fermion to be there selects particle configura-
tions with a low probability in the many-body wave function.
The fact that the resulting correlation pattern is stripelike can
be interpreted by the fact that picking a low-density point for
the reference location does not select (does not “pin”) one
broken-symmetry state of the bubble crystal (which is obvious
in the limit where the density at the reference points really
vanishes).

It is important to note that the pair correlation function we
measure indicates a quantum state that breaks both rotation
and translation symmetry as expected for a bubble phase.
A nematic phase would break only rotation symmetry so its
signature would be a correlation hole inside a uniform fluid
state but with an asymmetric pattern around this hole, the
preferred direction being fixed by the boundary conditions.
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FIG. 9. Pair correlation for the H(1)-H(3) model and different values of V1 and V3 (see the legends above each panel). This illustrates the
evolution from a bubble state in the hollow-core model [panel(a)] to the Laughlin liquid [in panel (f)] with short-ranged correlations only and
an isotropic correlation hole. Note that in panel (e) the reference point of the pair correlation has been chosen slightly away from the center of
the cylinder so that it (approximately) matches a maximum of the density. In all cases Ne = 30, Norb = 84 = Nφ + 1, and L = 20, as in Fig. 6.

This is not what we observe here. Indeed when we are closer
to the pure V1 model the pair correlations have a perfectly
circular correlation hole and when this phase is destroyed
by the effect of V3 pseudopotential there is appearance of a
modulation pattern that breaks the translation symmetry in
the whole system, well beyond the extent of the hole while
a nematic state would have an asymmetric hole surrounded by
a uniform background.

V. CONCLUSIONS

We have studied the hollow-core H3 model with repulsive
interactions only in the RAM m = 3 channel at filling fraction
ν = 1

3 . It has been observed by WYQ that many spectral
signatures of an incompressible state are present on the sphere
geometry when the shift is taken to be 7. However, the scaling
of gaps calculated on the corresponding neutral and charged
excitations points to a compressible state in the thermody-
namic limit. This is in agreement with recent calculations on
the torus geometry [27]. To clarify the nature of this state we
have computed the spatial correlations of the WYQ state on
the torus by using the projected static structure factor. For a
hexagonal or square unit cell this quantity has a modulated
double-ring structure unlike that of the Laughlin liquid at the
same filling factor. When tuning the aspect ratio of a rect-
angular cell in the range 0.3 � a0 � 0.5 the structure factor
develops two very sharp peaks indicating the presence of a
one-dimensional ordering pattern as is the case of half-filled
Landau levels of indices N � 2 for the Coulomb interaction.

This is confirmed by computation of the pair correlation in
real space in this geometry that shows a stripe modulation with
a characteristic length ≈5�.

Since these results are severely size-limited we have used
the DMRG algorithm on the cylinder geometry to study much
larger systems of up to 30 fermions. We have focused again
on the pair correlation function to understand the nature of the
ground state. While an incompressible ground state would just
exhibit a correlation hole and no prominent structure beyond
that, we find a clear appearance of a two-dimensional arrange-
ment (for large enough systems beyond those available in
the torus or sphere geometry) of modulated density and each
overdensity contains exactly two electrons. This is evidence
for the 2-electron bubble phase in line with Hartree-Fock the-
ory [21–24] for Coulomb interaction in higher Landau levels.

In the pair correlation measurements we find evidence for
breakdown of both translation and rotation symmetry break-
ing. This is consistent with a bubble phase but not with a
nematic phase that would appear as a uniform state beyond
an asymmetric correlation hole. It is likely that one would
need to add extra pseudopotentials like V5 to realize a nematic
state [35].

The bubble phase is compressible in agreement with our
findings on gap scaling in the sphere geometry. This coherent
picture shows that the hollow-core model is not a good candi-
date for describing the effective theory of composite fermions
in the second �LL, a remark that was made in Ref. [12]. If
an unconventional state describes the physics of CFs in this
case then our results imply that one should go beyond the
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pure hollow-core model to capture an eventual incompressible
phase with the WYQ shift.
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APPENDIX A: FIRST- AND SECOND-QUANTIZED FORMS
OF THE DENSITY IN REAL SPACE

In first-quantized form, the mean density particle density is
defined by

ρ(r) =
Ne∑

i=1

〈δ(r − r̂i )〉, (A1)

where the sum runs over all the particles. In second-quantized
form it becomes

ρ(r) = 〈ψ̂†(r)ψ̂ (r)〉 (A2)

=
Norb∑

n,n′=1

φ∗
n (r)φn′ (r)〈c†

ncn′ 〉, (A3)

where ψ̂†(r) = ∑
n φ∗(r)c†

n and the sums over n and n′ run
over all the orbitals (single-particle states). In cases where the
total angular momentum is conserved 〈c†

ncn′ 〉 vanishes unless
n = n′ and one gets

ρ(r) =
Norb∑

n

|φn(r)|2〈c†
ncn〉 (A4)

= 1

L�
√

π

Norb∑
n

exp

(
(x − xn)2

�2

)
〈c†

ncn〉. (A5)

Writing r = (x, y), the above density is independent of y
and gives Eq. (C1). The above normalization ensures that∫

d2rρ(r) = ∑Norb
n 〈c†

ncn〉 = Ne, as it should.

APPENDIX B: FIRST- AND SECOND-QUANTIZED FORMS
OF THE TWO-POINT CORRELATIONS

The density-density correlation function D can be defined
as follows:

D(r1, r2) =
∑
i, j

〈δ(r1 − r̂i )δ(r2 − r̂ j )〉, (B1)

where the sum runs over all the particles. In second-quantized
form it becomes

D(r1, r2) = 〈ψ̂†(r1)ψ̂ (r1)ψ̂†(r2)ψ̂ (r2)〉 (B2)

=
Norb∑

i, j,k,l=1

φ∗
i (r1)φ j (r1)φ∗

k (r2)φl (r2)〈c†
i c jc

†
kcl〉.

(B3)

Another quantity of interest is the pair correlation function,

G(r1, r2) =
∑
i �= j

〈δ(r1 − r̂i )δ(r2 − r̂ j )〉, (B4)

which in second quantization gives

G(r1, r2) = 〈ψ̂†(r1)ψ̂†(r2)ψ̂ (r2)ψ̂ (r1)〉 (B5)

=
Norb∑

i, j,k,l=1

φ∗
i (r1)φ∗

j (r2)φk (r2)φl (r1)〈c†
i c†

j ckcl〉.

(B6)

APPENDIX C: DMRG IMPLEMENTATION

Several authors have employed DMRG simulations
to study fractional quantum Hall effect (FQHE) prob-
lems [44,45,47–56]. In the present work we performed some
matrix-product-state (MPS) and matrix-product-operator
(MPO) based finite-size DMRGs. Our implementation is
based on the ITensor [57] library.

The Hamiltonian Eqs. (16) is first converted into an
MPO [58]. This task is performed using the “AutoMPO”
and “toMPO” features of the ITensor library. Although this
conversion to an MPO is not exact, in all our calculations the
cutoff parameter was set to a very small value, ε = 10−16, en-
suring that this approximation has no significant effect on the
results presented here. Typical values for the bond dimension
of the MPO are displayed in Fig. 10 for the H(1) and H(3)

Hamiltonians.
For cylinders with an elongated aspect ratio (small L) the

parameter λ in Eq. (19) is small and the dominant interactions
are relatively short-ranged, and the MPO bond dimension
saturates with the cylinder length (parametrized by Norb). This
can be observed for L = 5 in Fig. 10. On the other hand,
for larger L, λ approaches unity and the interactions decay
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FIG. 10. MPO bond dimension as a function of the number of or-
bitals, for the V1 and V3 models and different values of the perimeter L
of the cylinder. The MPO truncation parameter was set to ε = 10−16.
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slowly with the orbital separation. In this case the MPO bond
dimension increases with L and with Norb. Of course, com-
bining both V1 and V3 interactions increases further the bond
dimension. As an illustration, for the Hamiltonians used Fig. 6
the bond dimension was found to be between 372 and 389
(depending on the values of V1 and V3). For consistency the
range of integers c, d in the Hamiltonian should be taken of
order L, meaning an increase of complexity when going to the
thermodynamic limit.

The code enforces the conservation of two quantum num-
bers: (i) the total number Ne of fermions, and (ii) the total
angular momentum Ĵ associated to the periodicity of the
cylinder in the y direction. It reads Ĵ = 2π

L

∑
n∈I nc†

ncn when
Norb is odd. When Norb is even, however, it is convenient to
redefine Ĵ = 2π

L

∑
n∈I (n − 1

2 )c†
ncn. With this convention the

“central” momentum sector, which is the only momentum
sector that is invariant under a reflection with respect to plane
x = 0, is Ĵ = 0 whatever the parity of Norb. All the results
discussed here were obtained in this momentum sector. In a
few cases we also looked at other momentum sectors to check
that the lowest energy state indeed has Ĵ = 0.

To detect some possible inhomogeneous states, we will
be interested in the real-space fermionic density ρ(x, y). An
eigenstate of total angular momentum Ĵ is translation invariant
in the y direction, and the above density becomes a function
of x only. In such a case the density is a convolution of orbital
densities {〈c†

ncn〉} with Gaussians

ρ(x) ∼
∑

n

e−(x−kn )2〈c†
ncn〉. (C1)

For this reason most of the information is contained in the
orbital densities.

APPENDIX D: DMRG CONVERGENCE

Unless specified otherwise, all the results presented here
were obtained with an MPS bond dimension χ = 8000. The
number of sweeps we performed typically goes from a few
tens to one hundred. This number was determined so that
the total energy variation between two successive sweeps is
smaller than 10−8.

The Laughlin state is the exact zero-energy ground state
of the pure V1 model when Norb = 3Ne − 2 = Nφ + 1 and
this provides a simple way to estimate the precision on the
energy. With 30 fermions (and Norb = 88) and L = 20 we find
a (variational) energy E � 10−8 and an MPS truncation error
O(10−10) for such a state when χ = 6000.

For more complicated states than the Laughlin wave func-
tion, such as the ground of a V1-V3 Hamiltonian, we however
expect some larger amount of quantum entanglement and
a larger truncation error for the same MPS dimension. For
L = 20 and χ of the order of a few thousand, the largest MPS
truncation error is of the order of 10−6 (see Table I).

Finally, we also show in Fig. 11 the evolution of the orbital
densities as a function of the MPS bond dimension χ for a sys-
tem with 30 fermions, V3 = 1, V1 = 0, and L = 20. Although
the data for χ = 200 are clearly not converged enough, the
curves for χ = 1000, 2000, 4000, 6000, and 8000 are very
close to each other.

TABLE I. Convergence of the energy as a function of the bond
dimension χ . The last column, ε, is the largest truncation (discarded
weight) during the last sweep. Parameters of the model: V1 = 0, V3 =
1, Norb = 84 = Nφ + 1, Ne = 30, and L = 20.

χ E0 ε

200 3.7031 7.6 × 10−5

1000 3.5585 1.7 × 10−5

2000 3.54003 6.5 × 10−6

4000 3.53068 3.5 × 10−6

6000 3.52796 1.4 × 10−6

8000 3.52705 9.5 × 10−7

APPENDIX E: THE H(3) MODEL SERIES OF STATES
AT Nφ = 5Ne − 9

It has been observed in Ref. [30] that there is a unique
zero-energy ground state for the V3 model satisfying Nφ =
5Ne − 9 starting from Ne = 5. We note that multiplication by a
Vandermonde square factor leads to a state which has exactly
the WYQ relation between flux and number of particles. This
state is also an orbital singlet as expected for a fluid state
without ordering. This feature exists at least till Ne = 11.
Contrary to the case of a Laughlin wave function this peculiar
state is not flanked by zero-energy quasiholes when adding
one extra flux quantum. Adding one flux quantum leads to a
state with orbital momentum Lorb = Ne/2 and a very small but
nonzero gap. In fact one needs two additional flux quanta to
obtain new states with zero energy which are now degenerate.
For an even number of electrons these states are grouped in
orbital multiplets with Lorb = Ne, Ne − 2, Ne − 4, . . . , 0, each
multiplet appearing exactly once and there are extra states
with Lorb = 0. Apart from the extra singlet states this is what
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FIG. 11. Orbital occupancies 〈c†
ncn〉 as a function of the (center

of mass) coordinate xn of the nth orbital (in units of the magnetic
length l). The different curves correspond to different maximal MPS
bond dimension χ , from χ = 200 up to χ = 8000. The curves for
χ = 2000, 4000, 6000, and 8000 are almost on top of each other at
this scale. The inset shows a zoom on a density maximum in the
center of the system. The associated energies and truncations are
given in Table I. Physical parameters: Ne = 30, Norb = 84 = Nφ + 1,
and L = 20.
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TABLE II. The first 13 coefficients in the expansion of the unique
zero-energy eigenstate of the H(3) model for Ne = 5 and Nφ = 23.
The left column gives the integer while the right column gives the
binary representation of the occupation numbers of the Slater deter-
minant. There are a total of 252 integer coefficients in the expansion
of the state. The root configuration is at the top of the table. These
integers are also the coefficients of the decomposition of the bosonic
state S onto the Schur basis.

3364 11000000100000011
−13456 11000000010000101
22736 11000000001001001
25984 11000000001000110
−21112 11000000000110001
−51968 11000000000101010
129920 11000000000011100
−13456 10100001000000011
35320 10100000100000101
−19488 10100000010001001
−22272 10100000010000110
−31668 10100000001010001
−77952 10100000001001010

one expects from two-particle states built with elementary
quasiholes having Lorb = Ne/2. When Ne is odd the pattern
of states is identical and the lowest total angular momentum
of the set of states is now Lorb = 1.

We now focus on the peculiar properties of the unique
zero-energy state at Nφ = 5Ne − 9. Notably we find that the
components of the ground-state eigenvector are all integers
after removing the normalization factors of the spherical basis
and writing the state in terms of the disk states Eq. (1). In
fact the property of having integer coefficients is true also for
small-size systems Ne = 4, Nφ = 9, 12, but the Fock spaces
are of very small sizes and it may happen that eigenstates are
simple. On the contrary the states satisfying Nφ = 5Ne − 9
quickly involve huge Fock spaces with growing number of
particles and thus the integer decomposition is a nontrivial
property. The statement of integer coefficients is quickly lim-
ited by the machine precision used in exact diagonalization. In
fact to obtain all integer coefficients one has to use quadruple
precision already for the state at Ne = 6 and Nφ = 21 which
lies in a space of Lz dimension 2137. In Table II we give
the first coefficients of the state with Ne = 5. The left column
gives the integers while the right column contains the binary
representation of the occupied state in the Slater determinant.
Since we are dealing with spinless fermions the occupations
numbers are only 0 or 1.

Starting from Ne = 6 particles we find that the polynomial
associated with the special state has a dominance property;
i.e., not all possible occupation number configurations ap-
pear in the expansion. Indeed those with nonzero coefficients
can be deduced from a root configuration by successive
squeezing operations as happens in many known multivariate
special polynomials like the Jack polynomials [31–34,59].
The squeezing operation moves a given particle from an-
gular momentum m1 to m′

1, another particle from m2 to
m′

2 with m1 < m′
1 � m′

2 < m2, and keeping the “center of
mass” intact m1 + m2 = m′

1 + m′
2. The root configuration is

TABLE III. The quantum numbers of zero-energy eigenstates for
the H(3) model. Here we display the case of Ne = 5 particles. The two
components of the wave vector K are given on the first line in units
of 2π/Lx,y. The calculation has been done in a rectangular unit cell
and is insensitive to the aspect ratio.

K (0,0) (0, Ne/2) (Ne/2, 0) (Ne/2, Ne/2)
deg. ×3 ×1 ×1 ×1

11000000(10000)k00000011 that we note as 1106(104)k0611
in a chemistry-like notation. The Laughlin wave function
at the same filling factor has also a root configuration but
which is (10000)k1. This root is nontrivial only starting from
Ne = 6 because for smaller number of particles there are no
constraints on the configurations apart from the Lz angular
momentum. We have obtained evidence up to Ne = 11, a
value beyond which the zero coefficients start to be numeri-
cally undistinguishable from the nonzero ones.

To discuss the special dominance structure it is convenient
to use also a bosonic wave function obtained by factoring out
a Vandermonde determinant since the state is antisymmetric:

P(z1, . . . , zN ) =
∏
i< j

(zi − z j ) × S (z1, . . . , zN ). (E1)

The antisymmetric N-body state is expanded on a Slater de-
terminant basis:

P(z1, . . . , zN ) =
∏
i< j

(zi − z j ) × S (z1, . . . , zN )

=
∑
{ni}

I{ni} det
[{

zni
j

}]
. (E2)

If we divide out both sides by the Vandermonde determinant
we see that the coefficients I{ni} determine the expansion of
the symmetric polynomial S onto the Schur basis. The root
partition for the bosonic polynomial S is given by

200000100010001 . . . 1000002 ≡ 205(103)k052. (E3)

This is in fact a partitioning of the total degree of the poly-
nomial. For Ne = 5 the root function contains the monomial
z0

1z0
2z6

3z12
4 z12

5 and the total degree is 30 = 12 + 12 + 6. So we
have the following partitions:

Ne = 5 : [6, 12, 12] ≡ 30, (E4)

Ne = 6 : [6, 10, 16, 16] ≡ 48, (E5)

Ne = 7 : [6, 10, 14, 20, 20] ≡ 70. (E6)

The total degree of S is given by 1
2 Ne(4Ne − 8). It would be

interesting to obtain a closed analytic formula for this special
state. The numerous known examples [31–34,59] suggest that

TABLE IV. Location of the zero-energy states for Ne = 6 parti-
cles. Same definitions as in Table III.

K (0,0) (0, Ne/2) (Ne/2, 0) (Ne/2, Ne/2)
deg. ×4 ×1 ×1 ×1
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TABLE V. Location of the zero-energy states for N = 7 particles. Same definitions as in Table III. There are now states inside the Brillouin
zone with zero energy.

K (0,0) (0, Ne/2) (Ne/2, 0) (Ne/2, Ne/2) (0, Ne/3) (Ne/3, 0) (Ne/3, Ne/3)
deg. ×7 ×1 ×1 ×1 ×1 ×1 ×1

this may be possible. However it is not a bona fide Jack
polynomial since it is known that the rotational invariance
of the state constrains both the root partition as well as the
parameter defining the Jack.

If now we study the H(3) model on a torus at fill-
ing 1

5 then we know already that there will be at least
one zero-energy state at the center of the Brillouin zone
K = 0 which is the nondegenerate Laughlin state. How-
ever we find more zero-energy states in a complex pattern.
For Ne = 5 we find that there is a threefold-degenerate
state at the center of the Brillouin zone and also ad-
ditional zero-energy states at the zone boundaries; see

Table III (and also Tables IV and V for 6 and 7 particles,
respectively).

The number of zero-energy states grows with the number
of particles in a manner reminiscent of the Haffnian state [60].
This special wave function is related to an irrational conformal
field theory and is presumably gapless [61,62]. There are sev-
eral quantum Hall states, including the Haldane-Rezayi spin-
singlet state [63–65] and the Gaffnian state [65], that share this
property. We have been unable to find an explicit analytic for-
mula for this special wave function. Its very peculiar proper-
ties are worth studying. We have learned that similar findings
have been obtained by S. H. Simon in unpublished work.
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